The Washington Post
Provide energy from fusion
Human-engineered fusion has been demonstrated on a small scale. The challenge is to scale up the process to commercial proportions, in an efficient, economical, and environmentally benign way.
Human-engineered fusion has been demonstrated on a small scale. The challenge is to scale up the process to commercial proportions, in an efficient, economical, and environmentally benign way.
If you have a
laptop computer, its battery probably contains the metallic element
lithium. In theory, the lithium in that battery could supply your
household electricity needs for 15 years.
Not in the form of a battery, of course. Rather, lithium could
someday be the critical element for producing power from nuclear fusion,
the energy source for the sun and hydrogen bombs. Power plants based on
lithium and using forms of hydrogen as fuel could in principle provide a
major sustainable source of clean energy in the future.What is fusion?
Fusion is the energy source for the sun. To be sure, producing power from fusion here on Earth is much more challenging than in the sun. There, enormous heat and gravitational pressure compress the nuclei of certain atoms into heavier nuclei, releasing energy. The single proton nuclei of two hydrogen isotopes, for example, are fused together to create the heavier nucleus of helium and a neutron. In that conversion, a tiny amount of mass is lost, transformed into energy as quantified by Einstein’s famous equation, E=mc2.Earthbound reactors cannot achieve the high pressures of the sun’s interior (such pressures have been achieved on Earth only in thermonuclear weapons, which use the radiation from a fission explosion to compress the fuel). But temperatures much higher than the sun’s can be created to compensate for the lesser pressure, especially if heavier forms of hydrogen, known as deuterium (with one proton and one neutron) and tritium (one proton plus two neutrons) are fused.
Deuterium is a relatively uncommon form of hydrogen, but water -- each molecule comprising two atoms of hydrogen and one atom of oxygen -- is abundant enough to make deuterium supplies essentially unlimited. Oceans could meet the world’s current energy needs for literally billions of years.
Tritium, on the other hand, is radioactive and is extremely scarce in nature. That’s where lithium comes in. Simple nuclear reactions can convert lithium into the tritium needed to fuse with deuterium. Lithium is more abundant than lead or tin in the Earth’s crust, and even more lithium is available from seawater. A 1,000 megawatt fusion-powered generating station would require only a few metric tons of lithium per year. As the oceans contain trillions of metric tons of lithium, supply would not be a problem for millions of years.
Can you control a fusion reaction?
Human-engineered fusion has already been demonstrated on a small scale. The challenges facing the engineering community are to find ways to scale up the fusion process to commercial proportions, in an efficient, economical, and environmentally benign way.A major demonstration of fusion’s potential will soon be built in southern France. Called ITER (International Thermonuclear Experimental Reactor), the test facility is a joint research project of the United States, the European Union, Japan, Russia, China, South Korea, and India. Designed to reach a power level of 500 megawatts, ITER will be the first fusion experiment to produce long pulse of energy release on a significant scale.
While other approaches to fusion are being studied, the most advanced involves using magnetic forces to hold the fusion ingredients together. ITER will use this magnetic confinement method in a device known as a tokamak, where the fuels are injected into and confined in a vacuum chamber and heated to temperatures exceeding 100 million degrees. Under those conditions the fusion fuels become a gas-like form of electrically charge matter known as a plasma. (Its electric charge is what allows confinement by magnetic forces.) ITER will test the ability of magnetic confinement to hold the plasma in place at high-enough temperatures and density for a long-enough time for the fusion reaction to take place.
Construction of ITER is scheduled to start by 2009, with plasma to be first produced in 2016, and generation of 500 megawatts of thermal energy by 2025. (It will not convert this heat to electricity, however.) Among ITER’s prime purposes will be identifying strategies for addressing various technical and safety issues that engineers will have to overcome to make fusion viable as a large-scale energy provider.
What are the barriers to making fusion reactors work?
For one thing, materials will be needed that can withstand the assaults from products of the fusion reaction. Deuterium-fusion reactions produce helium, which can provide some of the energy to keep the plasma heated. But the main source of energy to be extracted from the reaction comes from neutrons, which are also produced in the fusion reaction. The fast-flying neutrons will pummel through the reactor chamber wall into a blanket of material surrounding the reactor, depositing their energy as heat that can then be used to produce power. (In advanced reactor designs, the neutrons would also be used to initiate reactions converting lithium to tritium.)Not only will the neutrons deposit energy in the blanket material, but their impact will convert atoms in the wall and blanket into radioactive forms. Materials will be needed that can extract heat effectively while surviving the neutron-induced structural weakening for extended periods of time.
Methods also will be needed for confining the radioactivity induced by neutrons as well as preventing releases of the radioactive tritium fuel. In addition, interaction of the plasma with reactor materials will produce radioactive dust that needs to be removed.
Building full-scale fusion-generating facilities will require engineering advances to meet all of these challenges, including better superconducting magnets and advanced vacuum systems. The European Union and Japan are designing the International Fusion Materials Irradiation Facility, where possible materials for fusion plant purposes will be developed and tested. Robotic methods for maintenance and repair will also have to be developed.
While these engineering challenges are considerable, fusion provides many advantages beyond the prospect of its almost limitless supply of fuel.
Will fusion energy be safe?
From a safety standpoint, it poses no risk of a runaway nuclear reaction — it is so difficult to get the fusion reaction going in the first place that it can be quickly stopped by eliminating the injection of fuel. And after engineers learn how to control the first generation of fusion plasmas, from deuterium and tritium fuels, advanced second- or third-generation fuels could reduce radioactivity by orders of magnitude.Ultimately, of course, fusion’s success as an energy provider will depend on whether the challenges to building generating plants and operating them safely and reliably can be met in a way that makes the cost of fusion electricity economically competitive. The good news is that the first round of challenges are clearly defined, and motivations for meeting them are strong, as fusion fuels offer the irresistible combination of abundant supply with minimum environmental consequences.
References
Girard, J.P., et al. 2007. ITER, safety and licensing. Fusion Engineering and Design 82(5-14): 506-510. DOI: 10.1016/j.fusengdes.2007.03.017.
Holtkamp, N. 2007. An overview of the ITER project. Fusion Engineering and Design 82(5-14): 427-434. DOI: 10.1016/j.fusengdes.2007.03.029.
Magaud, P., G. Marbach, and I. Cook. 2004. Nuclear Fusion Reactors. Pp. 365-381 in Encyclopedia of Energy, Volume 4, ed. C.J. Cleveland. Elsevier Science: Oxford, U.K. DOI: 10.1016/B0-12-176480-X/00305-3.
Lithium
From Wikipedia, the free encyclopedia
This article is about the chemical element. For the use of lithium as a medication, see Lithium (medication). For other uses, see Lithium (disambiguation).
Lithium | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3Li | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lithium in the periodic table | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Appearance | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
silvery-white (shown floating in oil) Spectral lines of lithium |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
General properties | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Name, symbol, number | lithium, Li, 3 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Pronunciation | /ˈlɪθiəm/ LI-thee-əm | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Element category | alkali metal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Group, period, block | 1 (alkali metals), 2, s | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight | 6.94(1) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electron configuration | [He] 2s1 2, 1 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Physical properties | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Phase | solid | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Density (near r.t.) | 0.534 g·cm−3 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Liquid density at m.p. | 0.512 g·cm−3 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Melting point | 453.65 K, 180.50 °C, 356.90 °F | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Boiling point | 1603 K, 1330 °C, 2426 °F | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Critical point | (extrapolated) 3220 K, 67 MPa |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Heat of fusion | 3.00 kJ·mol−1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Heat of vaporization | 136 kJ·mol−1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Molar heat capacity | 24.860 J·mol−1·K−1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vapor pressure | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomic properties | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Oxidation states | +1 (strongly basic oxide) |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electronegativity | 0.98 (Pauling scale) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Ionization energies | 1st: 520.2 kJ·mol−1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2nd: 7298.1 kJ·mol−1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3rd: 11815.0 kJ·mol−1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomic radius | 152 pm | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Covalent radius | 128±7 pm | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Van der Waals radius | 182 pm | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Miscellanea | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Crystal structure | body-centered cubic | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Magnetic ordering | paramagnetic | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electrical resistivity | (20 °C) 92.8 nΩ·m | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Thermal conductivity | 84.8 W·m−1·K−1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Thermal expansion | (25 °C) 46 µm·m−1·K−1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Speed of sound (thin rod) | (20 °C) 6000 m·s−1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Young's modulus | 4.9 GPa | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Shear modulus | 4.2 GPa | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Bulk modulus | 11 GPa | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mohs hardness | 0.6 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CAS registry number | 7439-93-2 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
History | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Discovery | Johan August Arfwedson (1817) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
First isolation | William Thomas Brande (1821) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Most stable isotopes | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Main article: Isotopes of lithium | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The nuclei of lithium verge on instability, since the two stable lithium isotopes found in nature have among the lowest binding energies per nucleon of all stable nuclides. Because of its relative nuclear instability, lithium is less common in the solar system than 25 of the first 32 chemical elements even though the nuclei are very light in atomic weight.[1] For related reasons, lithium has important links to nuclear physics. The transmutation of lithium atoms to helium in 1932 was the first fully man-made nuclear reaction, and lithium-6 deuteride serves as a fusion fuel in staged thermonuclear weapons.[2]
Lithium and its compounds have several industrial applications, including heat-resistant glass and ceramics, high strength-to-weight alloys used in aircraft, lithium batteries and lithium-ion batteries. These uses consume more than half of lithium production.
Trace amounts of lithium are present in all organisms. The element serves no apparent vital biological function, since animals and plants survive in good health without it. Non-vital functions have not been ruled out. The lithium ion Li+ administered as any of several lithium salts has proved to be useful as a mood-stabilizing drug in the treatment of bipolar disorder, due to neurological effects of the ion in the human body.
Properties
Main article: Alkali metal
Atomic and physical
Like the other alkali metals, lithium has a single valence electron that is easily given up to form a cation.[3] Because of this, it is a good conductor of heat and electricity as well as a highly reactive element, though the least reactive of the alkali metals. Lithium's low reactivity compared to other alkali metals is due to the proximity of its valence electron to its nucleus (the remaining two electrons are in lithium's 1s orbital and are much lower in energy, and therefore they do not participate in chemical bonds).[3]Lithium metal is soft enough to be cut with a knife. When cut, it possesses a silvery-white color that quickly changes to gray due to oxidation.[3] While it has one of the lowest melting points among all metals (180 °C), it has the highest melting and boiling points of the alkali metals.[4]
Lithium has a very low density of 0.534 g/cm3, comparable with that of pine wood. It is the least dense of all elements that are solids at room temperature, the next lightest solid element (potassium, at 0.862 g/cm3) being more than 60% denser. Furthermore, apart from helium and hydrogen, it is less dense than any liquid element, being only 2/3 as dense as liquid nitrogen (0.808 g/cm3).[note 1][5] Lithium can float on the lightest hydrocarbon oils and is one of only three metals that can float on water, the other two being sodium and potassium.
Lithium's coefficient of thermal expansion is twice that of aluminium and almost four times that of iron.[6] It has the highest specific heat capacity of any solid element. Lithium is superconductive below 400 μK at standard pressure[7] and at higher temperatures (more than 9 K) at very high pressures (>20 GPa)[8] At temperatures below 70 K, lithium, like sodium, undergoes diffusionless phase change transformations. At 4.2 K it has a rhombohedral crystal system (with a nine-layer repeat spacing); at higher temperatures it transforms to face-centered cubic and then body-centered cubic. At liquid-helium temperatures (4 K) the rhombohedral structure is the most prevalent.[9] Multiple allotropic forms have been reported for lithium at high pressures.[10]
Lithium has a specific heat capacity of 3.58 kilojoules per kilogram-Kelvin, the highest of all solids.[11][12] Because of this, lithium metal is often used in coolants for heat transfer applications.[11]
Chemistry and compounds
Lithium reacts with water easily, but with noticeably less energy than other alkali metals do. The reaction forms hydrogen gas and lithium hydroxide in aqueous solution.[3] Because of its reactivity with water, lithium is usually stored under cover of a hydrocarbon, often petroleum jelly. Though the heavier alkali metals can be stored in more dense substances, such as mineral oil, lithium is not dense enough to be fully submerged in these liquids.[13] In moist air, lithium rapidly tarnishes to form a black coating of lithium hydroxide (LiOH and LiOH·H2O), lithium nitride (Li3N) and lithium carbonate (Li2CO3, the result of a secondary reaction between LiOH and CO2).[14]When placed over a flame, lithium compounds give off a striking crimson color, but when it burns strongly the flame becomes a brilliant silver. Lithium will ignite and burn in oxygen when exposed to water or water vapors.[15] Lithium is flammable, and it is potentially explosive when exposed to air and especially to water, though less so than the other alkali metals. The lithium-water reaction at normal temperatures is brisk but nonviolent, as the hydrogen produced will not ignite on its own. As with all alkali metals, lithium fires are difficult to extinguish, requiring dry powder fire extinguishers, specifically the Class D type (see Types of extinguishing agents). Lithium is the only metal which reacts with nitrogen under normal conditions.[16][17]
Lithium has a diagonal relationship with magnesium, an element of similar atomic and ionic radius. Chemical resemblances between the two metals include the formation of a nitride by reaction with N2, the formation of an oxide (Li
2O) and peroxide (Li
2O
2) when burnt in O2, salts with similar solubilities, and thermal instability of the carbonates and nitrides.[14][18] The metal reacts with hydrogen gas at high temperatures to produce lithium hydride (LiH).[19]
Other known binary compounds include the halides (LiF, LiCl, LiBr, LiI), and the sulfide (Li
2S), the superoxide (LiO
2), carbide (Li
2C
2). Many other inorganic compounds are known, where lithium combines with anions to form various salts: borates, amides, carbonate, nitrate, or borohydride (LiBH
4). Multiple organolithium reagents are known where there is a direct bond between carbon and lithium atoms effectively creating a carbanion. These are extremely powerful bases and nucleophiles. In many of these organolithium compounds, the lithium ions tend to aggregate into high-symmetry clusters by themselves, which is relatively common for alkali cations.[20] LiHe, a very weakly interacting van der Waals compound, has been detected at very low temperatures.[21]
Lithium has also been found to exhibit ferromagnetism in its gaseous form, under certain conditions.[22]
Isotopes
Main article: Isotopes of lithium
Naturally occurring lithium is composed of two stable isotopes, 6Li and 7Li, the latter being the more abundant (92.5% natural abundance).[3][13][23] Both natural isotopes have anomalously low nuclear binding energy per nucleon compared to the next lighter and heavier elements, helium and beryllium, which means that alone among stable light elements, lithium can produce net energy through nuclear fission. The two lithium nuclei have lower binding energies per nucleon than any other stable nuclides other than deuterium and helium-3.[24]
As a result of this, though very light in atomic weight, lithium is
less common in the Solar System than 25 of the first 32 chemical
elements.[1] Seven radioisotopes have been characterized, the most stable being 8Li with a half-life of 838 ms and 9Li with a half-life of 178 ms. All of the remaining radioactive isotopes have half-lives that are shorter than 8.6 ms. The shortest-lived isotope of lithium is 4Li, which decays through proton emission and has a half-life of 7.6 × 10−23 s.[25]7Li is one of the primordial elements (or, more properly, primordial nuclides) produced in Big Bang nucleosynthesis. A small amount of both 6Li and 7Li are produced in stars, but are thought to be burned as fast as produced.[26] Additional small amounts of lithium of both 6Li and 7Li may be generated from solar wind, cosmic rays hitting heavier atoms, and from early solar system 7Be and 10Be radioactive decay.[27] While lithium is created in stars during the Stellar nucleosynthesis, it is further burnt. 7Li can also be generated in carbon stars.[28]
Lithium isotopes fractionate substantially during a wide variety of natural processes,[29] including mineral formation (chemical precipitation), metabolism, and ion exchange. Lithium ions substitute for magnesium and iron in octahedral sites in clay minerals, where 6Li is preferred to 7Li, resulting in enrichment of the light isotope in processes of hyperfiltration and rock alteration. The exotic 11Li is known to exhibit a nuclear halo. The process known as laser isotope separation can be used to separate lithium isotopes.[30]
Nuclear weapons manufacture and other nuclear physics uses are a major source of artificial lithium fractionation, with the light isotope 6Li being retained by industry and military stockpiles to such an extent as to slightly but measurably change the 6Li to 7Li ratios even in natural sources, such as rivers. This has led to unusual uncertainty in the standardized atomic weight of lithium, since this quantity depends on the natural abundance ratios of these naturally-occurring stable lithium isotopes, as they are available in commercial lithium mineral sources.[31]
Occurrence
Astronomical
Main article: Nucleosynthesis
According to modern cosmological theory, lithium—as both of its
stable isotopes lithium-6 and lithium-7—was among the 3 elements synthesized in the Big Bang.[32] Though the amount of lithium generated in Big Bang nucleosynthesis is dependent upon the number of photons per baryon,
for accepted values the lithium abundance can be calculated, and there
is a "cosmological lithium discrepancy" in the Universe: older stars
seem to have less lithium than they should, and some younger stars have
far more. The lack of lithium in older stars is apparently caused by the
"mixing" of lithium into the interior of stars, where it is destroyed.[33] Furthermore, lithium is produced in younger stars. Though it transmutes into two atoms of helium due to collision with a proton
at temperatures above 2.4 million degrees Celsius (most stars easily
attain this temperature in their interiors), lithium is more abundant
than predicted in later-generation stars, for causes not yet completely
understood.[13]Though it was one of the three first elements (together with helium and hydrogen) to be synthesized in the Big Bang, lithium, together with beryllium and boron are markedly less abundant than other nearby elements. This is a result of the low temperature necessary to destroy lithium, and a lack of common processes to produce it.[34]
Lithium is also found in brown dwarf substellar objects and certain anomalous orange stars. Because lithium is present in cooler, less-massive brown dwarfs, but is destroyed in hotter red dwarf stars, its presence in the stars' spectra can be used in the "lithium test" to differentiate the two, as both are smaller than the Sun.[13][35][36] Certain orange stars can also contain a high concentration of lithium. Those orange stars found to have a higher than usual concentration of lithium (such as Centaurus X-4) orbit massive objects—neutron stars or black holes—whose gravity evidently pulls heavier lithium to the surface of a hydrogen-helium star, causing more lithium to be observed.[13]
Terrestrial
Country | Production | Reserves[note 2] |
---|---|---|
Argentina | 3,200 | 850,000 |
Australia | 9,260 | 970,000 |
Brazil | 160 | 64,000 |
Canada (2010) | 480 | 180,000 |
Chile | 12,600 | 7,500,000 |
People's Republic of China | 5,200 | 3,500,000 |
Portugal | 820 | 10,000 |
Zimbabwe | 470 | 23,000 |
World total | 34,000 | 13,000,000 |
See also: Lithium minerals
Although lithium is widely distributed on Earth, it does not naturally occur in elemental form due to its high reactivity.[3]
The total lithium content of seawater is very large and is estimated as
230 billion tonnes, where the element exists at a relatively constant
concentration of 0.14 to 0.25 parts per million (ppm),[38][39] or 25 micromolar;[40] higher concentrations approaching 7 ppm are found near hydrothermal vents.[39]Estimates for the Earth's crustal content range from 20 to 70 ppm by weight.[14] In keeping with its name, lithium forms a minor part of igneous rocks, with the largest concentrations in granites. Granitic pegmatites also provide the greatest abundance of lithium-containing minerals, with spodumene and petalite being the most commercially viable sources.[14] Another significant mineral of lithium is lepidolite.[41] A newer source for lithium is hectorite clay, the only active development of which is through the Western Lithium Corporation in the United States.[42] At 20 mg lithium per kg of Earth's crust,[43] lithium is the 25th most abundant element.
According to the Handbook of Lithium and Natural Calcium, "Lithium is a comparatively rare element, although it is found in many rocks and some brines, but always in very low concentrations. There are a fairly large number of both lithium mineral and brine deposits but only comparatively few of them are of actual or potential commercial value. Many are very small, others are too low in grade."[44]
One of the largest reserve base[note 2] of lithium is in the Salar de Uyuni area of Bolivia, which has 5.4 million tonnes. US Geological Survey, estimates that in 2010 Chile had the largest reserves by far (7.5 million tonnes)[45] and the highest annual production (8,800 tonnes). Other major suppliers include Australia, Argentina and China.[37][46]
In June 2010, the New York Times reported that American geologists were conducting ground surveys on dry salt lakes in western Afghanistan believing that large deposits of lithium are located there. "Pentagon officials said that their initial analysis at one location in Ghazni Province showed the potential for lithium deposits as large as those of Bolivia, which now has the world's largest known lithium reserves."[47] These estimates are "based principally on old data, which was gathered mainly by the Soviets during their occupation of Afghanistan from 1979–1989" and "Stephen Peters, the head of the USGS's Afghanistan Minerals Project, said that he was unaware of USGS involvement in any new surveying for minerals in Afghanistan in the past two years. 'We are not aware of any discoveries of lithium,' he said."[48]
Biological
Lithium is found in trace amount in numerous plants, plankton, and invertebrates, at concentrations of 69 to 5,760 parts per billion (ppb). In vertebrates the concentration is slightly lower, and nearly all vertebrate tissue and body fluids have been found to contain lithium ranging from 21 to 763 ppb.[39] Marine organisms tend to bioaccumulate lithium more than terrestrial ones.[49] It is not known whether lithium has a physiological role in any of these organisms,[39] but nutritional studies in mammals have indicated its importance to health, leading to a suggestion that it be classed as an essential trace element with an RDA of 1 mg/day.[50] Observational studies in Japan, reported in 2011, suggested that naturally occurring lithium in drinking water may increase human lifespan.[51]History
Petalite (LiAlSi4O10) was discovered in 1800 by the Brazilian chemist and statesman José Bonifácio de Andrada e Silva in a mine on the island of Utö, Sweden.[52][53][54] However, it was not until 1817 that Johan August Arfwedson, then working in the laboratory of the chemist Jöns Jakob Berzelius, detected the presence of a new element while analyzing petalite ore.[55][56][57] This element formed compounds similar to those of sodium and potassium, though its carbonate and hydroxide were less soluble in water and more alkaline.[58] Berzelius gave the alkaline material the name "lithion/lithina", from the Greek word λιθoς (transliterated as lithos, meaning "stone"), to reflect its discovery in a solid mineral, as opposed to potassium, which had been discovered in plant ashes, and sodium which was known partly for its high abundance in animal blood. He named the metal inside the material "lithium".[3][53][57]Arfwedson later showed that this same element was present in the minerals spodumene and lepidolite.[53] In 1818, Christian Gmelin was the first to observe that lithium salts give a bright red color to flame.[53] However, both Arfwedson and Gmelin tried and failed to isolate the pure element from its salts.[53][57][59] It was not isolated until 1821, when William Thomas Brande obtained it by electrolysis of lithium oxide, a process that had previously been employed by the chemist Sir Humphry Davy to isolate the alkali metals potassium and sodium.[13][59][60][61] Brande also described some pure salts of lithium, such as the chloride, and, estimating that lithia (lithium oxide) contained about 55% metal, estimated the atomic weight of lithium to be around 9.8 g/mol (modern value ~6.94 g/mol).[62] In 1855, larger quantities of lithium were produced through the electrolysis of lithium chloride by Robert Bunsen and Augustus Matthiessen.[53] The discovery of this procedure henceforth led to commercial production of lithium, beginning in 1923, by the German company Metallgesellschaft AG, which performed an electrolysis of a liquid mixture of lithium chloride and potassium chloride.[53][63][64]
The production and use of lithium underwent several drastic changes in history. The first major application of lithium was in high-temperature lithium greases for aircraft engines or similar applications in World War II and shortly after. This use was supported by the fact that lithium-based soaps have a higher melting point than other alkali soaps, and are less corrosive than calcium based soaps. The small market for lithium soaps and the lubricating greases based upon them was supported by several small mining operations mostly in the United States.
The demand for lithium increased dramatically during the Cold War with the production of nuclear fusion weapons. Both lithium-6 and lithium-7 produce tritium when irradiated by neutrons, and are thus useful for the production of tritium by itself, as well as a form of solid fusion fuel used inside hydrogen bombs in the form of lithium deuteride. The United States became the prime producer of lithium in the period between the late 1950s and the mid-1980s. At the end, the stockpile of lithium was roughly 42,000 tonnes of lithium hydroxide. The stockpiled lithium was depleted in lithium-6 by 75%, which was enough to affect the measured atomic weight of lithium in many standardized chemicals, and even the atomic weight of lithium in some "natural sources" of lithium ion which had been "contaminated" by lithium salts discharged from isotope separation facilities, which had found its way into ground water.[31][65]
Lithium was used to decrease the melting temperature of glass and to improve the melting behavior of aluminium oxide when using the Hall-Héroult process.[66][66] These two uses dominated the market until the middle of the 1990s. After the end of the nuclear arms race the demand for lithium decreased and the sale of Department of Energy stockpiles on the open market further reduced prices.[65] But in the mid-1990s, several companies started to extract lithium from brine which proved to be a less expensive method than underground or even open-pit mining. Most of the mines closed or shifted their focus to other materials as only the ore from zoned pegmatites could be mined for a competitive price. For example, the US mines near Kings Mountain, North Carolina closed before the turn of the 21st century.
The use in lithium ion batteries increased the demand for lithium and became the dominant use in 2007.[67] With the surge of lithium demand in batteries in the 2000s, new companies have expanded brine extraction efforts to meet the rising demand.[68][69]
Production
Since the end of World War II lithium production has greatly increased. The metal is separated from other elements in igneous minerals such as those above. Lithium salts are extracted from the water of mineral springs, brine pools and brine deposits. The metal is produced electrolytically from a mixture of fused 55% lithium chloride and 45% potassium chloride at about 450o C.[70] In 1998 it was about 95 US$ / kg (or 43 US$/pound).[71]Worldwide identified reserves of lithium in 2008 were estimated by the US Geological Survey as 13 million tonnes.[37] Deposits of lithium are found in South America throughout the Andes mountain chain. Chile is the leading lithium producer, followed by Argentina. Both countries recover the lithium from brine pools. In the United States lithium is recovered from brine pools in Nevada.[11] However, half the world's known reserves are located in Bolivia, a nation sitting along the central eastern slope of the Andes. In 2009 Bolivia was negotiating with Japanese, French, and Korean firms to begin extraction.[72] According to the US Geological Survey, Bolivia's Uyuni Desert has 5.4 million tonnes of lithium.[72][73] A newly discovered deposit in Wyoming's Rock Springs Uplift is estimated at 228,000 tons. Additional deposits in the same formation were extrapolated to be as much as 18 million tons.[74]
After an industry wide pricing reduction for lithium carbonate after the Great Financial Crisis, where major suppliers such as Sociedad Química y Minera (SQM) dropped pricing by 20%[75] in light of incoming lithium resource developers and to further defend their market position, pricing in 2012 scaled up due to increased lithium demand. A 2012 Business Week article outlined the existing oligopoly in the lithium space, "SQM, controlled by billionaire Julio Ponce, is the second-largest, followed by Rockwood, which is backed by Henry Kravis’s KKR & Co., and Philadelphia-based FMC." Global consumption may jump to 300,000 metric tons a year by 2020 from about 150,000 tons in 2012, as demand for lithium batteries has been growing at about 25 percent a year, outpacing the 4 percent to 5 percent overall gain in lithium[76]
A potential source is geothermal wells. Geothermal fluids carry leachates to the surface;[77] recovery of lithium has been demonstrated in the field.[78] As the lithium is separated by simple filtration techniques, the process and environmental costs are primarily that of the already-operating geothermal well; relative environmental impacts may thus be positive.[79]
There are differing opinions about the potential growth of lithium production. A 2008 study concluded that "realistically achievable lithium carbonate production will be sufficient for only a small fraction of future PHEV and EV global market requirements", that "demand from the portable electronics sector will absorb much of the planned production increases in the next decade", and that "mass production of lithium carbonate is not environmentally sound, it will cause irreparable ecological damage to ecosystems that should be protected and that LiIon propulsion is incompatible with the notion of the 'Green Car'".[46]
However, according to a 2011 study conducted at Lawrence Berkeley National Laboratory and the University of California Berkeley, the currently estimated reserve base of lithium should not be a limiting factor for large-scale battery production for electric vehicles, as the study estimated that on the order of 1 billion 40 kWh Li-based batteries could be built with current reserves.[80] Another 2011 study by researchers from the University of Michigan and Ford Motor Company found that there are sufficient lithium resources to support global demand until 2100, including the lithium required for the potential widespread use of hybrid electric, plug-in hybrid electric and battery electric vehicles. The study estimated global lithium reserves at 39 million tons, and total demand for lithium during the 90-year period analyzed at 12–20 million tons, depending on the scenarios regarding economic growth and recycling rates.[81]
Uses
Ceramics and glass
Lithium oxide is a widely used flux for processing silica, reducing the melting point and viscosity of the material and leading to glazes of improved physical properties including low coefficients for thermal expansion.[83] Lithium oxides are a component of ovenware. Worldwide, this is the single largest use for lithium compounds.[82] Lithium carbonate (Li2CO3) is generally used in this application: upon heating it converts to the oxide.[84]Electrical and electronics
In the later years of the 20th century, owing to its high electrochemical potential, lithium became an important component of the electrolyte and of one of the electrodes in batteries. Because of its low atomic mass, it has a high charge- and power-to-weight ratio. A typical lithium-ion battery can generate approximately 3 volts per cell, compared with 2.1 volts for lead-acid or 1.5 volts for zinc-carbon cells. Lithium-ion batteries, which are rechargeable and have a high energy density, should not be confused with lithium batteries, which are disposable (primary) batteries with lithium or its compounds as the anode.[85][86] Other rechargeable batteries that use lithium include the lithium-ion polymer battery, lithium iron phosphate battery, and the nanowire battery.Lubricating greases
The third most common use of lithium is in greases. Lithium hydroxide is a strong base and, when heated with a fat, produces a soap made of lithium stearate. Lithium soap has the ability to thicken oils, and it is used to manufacture all-purpose, high-temperature lubricating greases.[11][87][88]Metallurgy
When used as a flux for welding or soldering, metallic lithium promotes the fusing of metals during the process and eliminates the forming of oxides by absorbing impurities. Its fusing quality is also important as a flux for producing ceramics, enamels and glass. Alloys of the metal with aluminium, cadmium, copper and manganese are used to make high-performance aircraft parts (see also Lithium-aluminium alloys).[89]Other chemical and industrial uses
Pyrotechnics
Lithium compounds are used as pyrotechnic colorants and oxidizers in red fireworks and flares.[11][91]Air purification
Lithium chloride and lithium bromide are hygroscopic and are used as desiccants for gas streams.[11] Lithium hydroxide and lithium peroxide are the salts most used in confined areas, such as aboard spacecraft and submarines, for carbon dioxide removal and air purification. Lithium hydroxide absorbs carbon dioxide from the air by forming lithium carbonate, and is preferred over other alkaline hydroxides for its low weight.Lithium peroxide (Li2O2) in presence of moisture not only reacts with carbon dioxide to form lithium carbonate, but also releases oxygen.[92][93] The reaction is as follows:
- 2 Li2O2 + 2 CO2 → 2 Li2CO3 + O2.
Optics
Lithium fluoride, artificially grown as crystal, is clear and transparent and often used in specialist optics for IR, UV and VUV (vacuum UV) applications. It has one of the lowest refractive indexes and the farthest transmission range in the deep UV of most common materials.[95] Finely divided lithium fluoride powder has been used for thermoluminescent radiation dosimetry (TLD): when a sample of such is exposed to radiation, it accumulates crystal defects which, when heated, resolve via a release of bluish light whose intensity is proportional to the absorbed dose, thus allowing this to be quantified.[96] Lithium fluoride is sometimes used in focal lenses of telescopes.[11][97]The high non-linearity of lithium niobate also makes it useful in non-linear optics applications. It is used extensively in telecommunication products such as mobile phones and optical modulators, for such components as resonant crystals. Lithium applications are used in more than 60% of mobile phones.[98]
Organic and polymer chemistry
Organolithium compounds are widely used in the production of polymer and fine-chemicals. In the polymer industry, which is the dominant consumer of these reagents, alkyl lithium compounds are catalysts/initiators.[99] in anionic polymerization of unfunctionalized olefins.[100][101][102] For the production of fine chemicals, organolithium compounds function as strong bases and as reagents for the formation of carbon-carbon bonds. Organolithium compounds are prepared from lithium metal and alkyl halides.[103]Many other lithium compounds are used as reagents to prepare organic compounds. Some popular compounds include lithium aluminium hydride (LiAlH4), lithium triethylborohydride (LiBH(C2H5)3).
Military applications
Metallic lithium and its complex hydrides, such as Li[AlH4], are used as high energy additives to rocket propellants.[13] Lithium aluminum hydride can also be used by itself as a solid fuel.[104]The Mark 50 Torpedo stored chemical energy propulsion system (SCEPS) uses a small tank of sulfur hexafluoride gas which is sprayed over a block of solid lithium. The reaction generates heat which is used to generate steam. The steam propels the torpedo in a closed Rankine cycle.[105]
Lithium hydride containing lithium-6 is used in hydrogen bombs. In the bomb, it is placed around the core of an atomic bomb.[106]
Nuclear
Lithium-6 is valued as a source material for tritium production and as a neutron absorber in nuclear fusion. Natural lithium contains about 7.5% lithium-6 from which large amounts of lithium-6 have been produced by isotope separation for use in nuclear weapons.[107] Lithium-7 gained interest for use in nuclear reactor coolants.[108]Lithium deuteride was the fusion fuel of choice in early versions of the hydrogen bomb. When bombarded by neutrons, both 6Li and 7Li produce tritium — this reaction, which was not fully understood when hydrogen bombs were first tested, was responsible for the runaway yield of the Castle Bravo nuclear test. Tritium fuses with deuterium in a fusion reaction that is relatively easy to achieve. Although details remain secret, lithium-6 deuteride still apparently plays a role in modern nuclear weapons, as a fusion material.[109]
Lithium fluoride, when highly enriched in the lithium-7 isotope, forms the basic constituent of the fluoride salt mixture LiF-BeF2 used in liquid fluoride nuclear reactors. Lithium fluoride is exceptionally chemically stable and LiF-BeF2 mixtures have low melting points. In addition, 7Li, Be, and F are among the few nuclides with low enough thermal neutron capture cross-sections not to poison the fission reactions inside a nuclear fission reactor.[note 3][110]
In conceptualized nuclear fusion power plants, lithium will be used to produce tritium in magnetically confined reactors using deuterium and tritium as the fuel. Naturally occurring tritium is extremely rare, and must be synthetically produced by surrounding the reacting plasma with a 'blanket' containing lithium where neutrons from the deuterium-tritium reaction in the plasma will fission the lithium to produce more tritium:
- 6Li + n → 4He + 3T.
In 2013, the US Government Accountability Office said the Lithium-7 critical to the operation of 65 out of 100 American nuclear reactors “places their ability to continue to provide electricity at some risk”. The problem stems from the decay of US nuclear infrastructure. The US shut down most of its machinery in 1963, given a huge surplus, mostly consumed during the twentieth century. The report said it would take five years and $10 million to $12 million.[113]
Reactors that use lithium-7 heat water under high pressure and transfer heat through heat exchangers that are prone to corrosion. The reactors use lithium to counteract the corrosive effects of boric acid, which is added to the water to absorb excess neutrons.[113]
Medicine
Main article: Lithium (medication)
Lithium is useful in the treatment of bipolar disorder.[114] Lithium salts may also be helpful for related diagnoses, such as schizoaffective disorder and cyclic major depression. The active part of these salts is the lithium ion Li+.[114] They may increase the risk of developing Ebstein's cardiac anomaly in infants born to women who take lithium during the first trimester of pregnancy.[115]Lithium has also been researched as a possible treatment for cluster headaches.[116]
Precautions
NFPA 704 fire diamond |
---|
Fire diamond hazard sign for lithium metal |
Regulation
Some jurisdictions limit the sale of lithium batteries, which are the most readily available source of lithium for ordinary consumers. Lithium can be used to reduce pseudoephedrine and ephedrine to methamphetamine in the Birch reduction method, which employs solutions of alkali metals dissolved in anhydrous ammonia.[118][119] Carriage and shipment of some kinds of lithium batteries may be prohibited aboard certain types of transportation (particularly aircraft) because of the ability of most types of lithium batteries to fully discharge very rapidly when short-circuited, leading to overheating and possible explosion in a process called thermal runaway. Most consumer lithium batteries have thermal overload protection built-in to prevent this type of incident, or their design inherently limits short-circuit currents. Internal shorts have been known to develop due to manufacturing defects or damage to batteries that can lead to spontaneous thermal runaway.[120][121]See also
- Dilithium
- Lithium (medication)
- Lithium compounds
- Lithium-based grease
- Lithium-air battery
- Lithium-ion battery
Notes
- Densities for all the gaseous elements can be obtained at Airliquide.com
- Apendixes. By USGS definitions, reserve base "may encompass those parts of the resources that have a reasonable potential for becoming economically available within planning horizons beyond those that assume proven technology and current economics. The reserve base includes those resources that are currently economic (reserves), marginally economic (marginal reserves), and some of those that are currently subeconomic (subeconomic resources)."
- Beryllium and fluorine occur only as one isotope, 9Be and 19F respectively. These two, together with 7Li, as well as 2H, 11B, 15N, 209Bi, and the stable isotopes of C, and O, are the only nuclides with low enough thermal neutron capture cross sections aside from actinides to serve as major constituents of a molten salt breeder reactor fuel.
References
- Numerical data from: Lodders, Katharina (July 10, 2003). "Solar System Abundances and Condensation Temperatures of the Elements" (PDF). The Astrophysical Journal (The American Astronomical Society) 591 (2): 1220–1247. Bibcode:2003ApJ...591.1220L. doi:10.1086/375492. Graphed at File:SolarSystemAbundances.jpg
- Nuclear Weapon Design. Federation of American Scientists (1998-10-21). fas.org
- Krebs, Robert E. (2006). The History and Use of Our Earth's Chemical Elements: A Reference Guide. Westport, Conn.: Greenwood Press. ISBN 0-313-33438-2.
- Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. ISBN 0-8493-0486-5.
- "Nitrogen, N2, Physical properties, safety, MSDS, enthalpy, material compatibility, gas liquid equilibrium, density, viscosity, inflammability, transport properties". Encyclopedia.airliquide.com. Retrieved 2010-09-29.
- "Coefficients of Linear Expansion". Engineering Toolbox.
- Tuoriniemi, J; Juntunen-Nurmilaukas, K; Uusvuori, J; Pentti, E; Salmela, A; Sebedash, A (2007). "Superconductivity in lithium below 0.4 millikelvin at ambient pressure". Nature 447 (7141): 187–9. Bibcode:2007Natur.447..187T. doi:10.1038/nature05820. PMID 17495921.
- Struzhkin, V. V.; Eremets, M. I.; Gan, W; Mao, H. K.; Hemley, R. J. (2002). "Superconductivity in dense lithium". Science 298 (5596): 1213–5. Bibcode:2002Sci...298.1213S. doi:10.1126/science.1078535. PMID 12386338.
- Overhauser, A. W. (1984). "Crystal Structure of Lithium at 4.2 K". Physical Review Letters 53: 64–65. Bibcode:1984PhRvL..53...64O. doi:10.1103/PhysRevLett.53.64.
- Schwarz, Ulrich (2004). "Metallic high-pressure modifications of main group elements". Zeitschrift für Kristallographie 219 (6–2004): 376. Bibcode:2004ZK....219..376S. doi:10.1524/zkri.219.6.376.34637.
- Hammond, C. R. (2000). The Elements, in Handbook of Chemistry and Physics 81st edition. CRC press. ISBN 0-8493-0481-4.
- THERMO
- Emsley, John (2001). Nature's Building Blocks. Oxford: Oxford University Press. ISBN 0-19-850341-5.
- Kamienski, McDonald, Daniel P.; Stark, Marshall W.; Papcun, John R., Conrad W. (2004). "Lithium and lithium compounds". Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, Inc. doi:10.1002/0471238961.1209200811011309.a01.pub2.
- "XXIV.—On chemical analysis by spectrum-observations". Quarterly Journal of the Chemical Society of London 13 (3): 270. 1861. doi:10.1039/QJ8611300270.
- Krebs, Robert E. (2006). The history and use of our earth's chemical elements: a reference guide. Greenwood Publishing Group. p. 47. ISBN 0-313-33438-2.
- Institute, American Geological; Union, American Geophysical; Society, Geochemical (1 January 1994). Geochemistry international 31 (1–4). p. 115.
- Greenwood, Norman N.; Earnshaw, Alan (1984). Chemistry of the Elements. Oxford: Pergamon Press. pp. 97–99. ISBN 0-08-022057-6.
- Beckford, Floyd. "University of Lyon course online (powerpoint) slideshow". Archived from the original on 4 November 2005. Retrieved 2008-07-27. "definitions:Slides 8–10 (Chapter 14)"
- Sapse, Anne-Marie and von R. Schleyer, Paul (1995). Lithium chemistry: a theoretical and experimental overview. Wiley-IEEE. pp. 3–40. ISBN 0-471-54930-4.
- Bretislav Friedrich (8 April 2013). APS Physics 6. p. 42.
- http://web.mit.edu/newsoffice/2009/magnetic-gas-0918.html
- "Isotopes of Lithium". Berkeley National Laboratory, The Isotopes Project. Retrieved 2008-04-21.
- File:Binding energy curve - common isotopes.svg shows binding energies of stable nuclides graphically; the source of the data-set is given in the figure background.
- Sonzogni, Alejandro. "Interactive Chart of Nuclides". National Nuclear Data Center: Brookhaven National Laboratory. Retrieved 2008-06-06.
- Asplund, M. et al. (2006). "Lithium Isotopic Abundances in Metal-poor Halo Stars". The Astrophysical Journal 644: 229. arXiv:astro-ph/0510636. Bibcode:2006ApJ...644..229A. doi:10.1086/503538.
- Chaussidon, M.; Robert, F.; McKeegan, K.D. (2006). "Li and B isotopic variations in an Allende CAI: Evidence for the in situ decay of short-lived 10Be and for the possible presence of the short−lived nuclide 7Be in the early solar system". Geochimica et Cosmochimica Acta 70 (1): 224–245. Bibcode:2006GeCoA..70..224C. doi:10.1016/j.gca.2005.08.016.
- Denissenkov, P. A.; Weiss, A. (2000). "Episodic lithium production by extra-mixing in red giants". Astronomy and Astrophysics 358: L49–L52. arXiv:astro-ph/0005356. Bibcode:2000A&A...358L..49D.
- Seitz, H.M.; Brey, G.P.; Lahaye, Y.; Durali, S.; Weyer, S. (2004). "Lithium isotopic signatures of peridotite xenoliths and isotopic fractionation at high temperature between olivine and pyroxenes". Chemical Geology 212 (1–2): 163–177. doi:10.1016/j.chemgeo.2004.08.009.
- Duarte, F. J (2009). Tunable Laser Applications. CRC Press. p. 330. ISBN 1-4200-6009-0.
- Coplen, T.B.; Bohlke, J.K.; De Bievre, P.; Ding, T.; Holden, N.E.; Hopple, J.A.; Krouse, H.R.; Lamberty, A.; Peiser, H.S. et al. (2002). "Isotope-abundance variations of selected elements (IUPAC Technical Report)". Pure and Applied Chemistry 74 (10): 1987. doi:10.1351/pac200274101987.
- Boesgaard, A. M.; Steigman, G. (1985). "Big bang nucleosynthesis – Theories and observations". IN: Annual review of astronomy and astrophysics. Volume 23 (A86-14507 04–90). Palo Alto 23: 319. Bibcode:[1] 1985ARA&A..23..319B]]. doi:10.1146/annurev.aa.23.090185.001535.
- Cain, Fraser (2006-08-16). "Why Old Stars Seem to Lack Lithium".
- "Element Abundances". Archived from the original on 1 September 2006. Retrieved 2009-11-17.
- Cain, Fraser. "Brown Dwarf". Universe Today. Archived from the original on 2011-02-25. Retrieved 2009-11-17.
- Reid, Neill (2002-03-10). "L Dwarf Classification". Retrieved 2013-03-06.
- U.S. Geological Survey, 2012, commodity summaries 2011: U.S. Geological Survey
- "Lithium Occurrence". Institute of Ocean Energy, Saga University, Japan. Archived from the original on 2009-05-02. Retrieved 2009-03-13.
- "Some Facts about Lithium". ENC Labs. Retrieved 2010-10-15.
- "Extraction of metals from sea water". Springer Berlin Heidelberg. 1984.
- Atkins, Peter (2010). Shriver & Atkins' Inorganic Chemistry (5 ed.). New York: W. H. Freeman and Company. p. 296. ISBN 0199236178.
- Moores, S. (June 2007). "Between a rock and a salt lake". Industrial Minerals 477: 58.
- Taylor, S. R.; McLennan, S. M.; The continental crust: Its composition and evolution, Blackwell Sci. Publ., Oxford, 330 pp. (1985). Cited in Abundances of the elements (data page)
- Garrett, Donald (2004) Handbook of Lithium and Natural Calcium, Academic Press, cited in The Trouble with Lithium 2, Meridian International Research (2008)
- Clarke, G.M. and Harben, P.W., "Lithium Availability Wall Map". Published June 2009. Referenced at International Lithium Alliance
- "The Trouble with Lithium 2" (PDF). Meridian International Research. 2008. Retrieved 2010-09-29.
- Risen, James (2010-06-13). "U.S. Identifies Vast Riches of Minerals in Afghanistan". The New York Times. Retrieved 2010-06-13.
- Page, Jeremy; Evans, Michael (2010-06-15). "Taleban zones mineral riches may rival Saudi Arabia says Pentagon". The Times (London).
- Chassard-Bouchaud, C; Galle, P; Escaig, F; Miyawaki, M (1984). "Bioaccumulation of lithium by marine organisms in European, American, and Asian coastal zones: microanalytic study using secondary ion emission". Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie 299 (18): 719–24. PMID 6440674.
- Schrauzer, GN (2002). "Lithium: Occurrence, dietary intakes, nutritional essentiality". Journal of the American College of Nutrition 21 (1): 14–21. doi:10.1080/07315724.2002.10719188. PMID 11838882.
- Zarse, Kim; Terao, Takeshi; Tian, Jing; Iwata, Noboru; Ishii, Nobuyoshi; Ristow, Michael (2011). "Low-dose lithium uptake promotes longevity in humans and metazoans". European Journal of Nutrition 50 (5): 387–9. doi:10.1007/s00394-011-0171-x. PMC 3151375. PMID 21301855.
- "Petalite Mineral Information". Mindat.org. Retrieved 2009-08-10.
- "Lithium:Historical information". Retrieved 2009-08-10.
- Weeks, Mary (2003). Discovery of the Elements. Whitefish, Montana, United States: Kessinger Publishing. p. 124. ISBN 0-7661-3872-0. Retrieved 2009-08-10.
- "Johan August Arfwedson". Periodic Table Live!. Archived from the original on 2010-10-07. Retrieved 2009-08-10.
- "Johan Arfwedson". Archived from the original on 5 June 2008. Retrieved 2009-08-10.
- van der Krogt, Peter. "Lithium". Elementymology & Elements Multidict. Retrieved 2010-10-05.
- Clark, Jim (2005). "Compounds of the Group 1 Elements". Retrieved 2009-08-10.
- Enghag, Per (2004). Encyclopedia of the Elements: Technical Data – History –Processing – Applications. Wiley. pp. 287–300. ISBN 978-3-527-30666-4.
- Various authors (1818). "The Quarterly journal of science and the arts" (PDF). The Quarterly Journal of Science and the Arts (Royal Institution of Great Britain) 5: 338. Retrieved 2010-10-05.
- "Timeline science and engineering". DiracDelta Science & Engineering Encyclopedia. Retrieved 2008-09-18.
- Brande, William Thomas; MacNeven, William James (1821). A manual of chemistry. Long. p. 191. Retrieved 2010-10-08.
- Green, Thomas (2006-06-11). "Analysis of the Element Lithium". echeat.
- Garrett, Donald E (2004-04-05). Handbook of Lithium and Natural Calcium Chloride. p. 99. ISBN 9780080472904.
- Ober, Joyce A. (1994). "Commodity Report 1994: Lithium". United States Geological Survey. Retrieved 2010-11-03.
- Deberitz, Jürgen; Boche, Gernot (2003). "Lithium und seine Verbindungen – Industrielle, medizinische und wissenschaftliche Bedeutung". Chemie in unserer Zeit 37 (4): 258. doi:10.1002/ciuz.200300264.
- Ober, Joyce A. (1994). "Minerals Yearbook 2007 : Lithium". United States Geological Survey. Retrieved 2010-11-03.
- Kogel, Jessica Elzea (2006). "Lithium". Industrial minerals & rocks: commodities, markets, and uses. Littleton, Colo.: Society for Mining, Metallurgy, and Exploration. p. 599. ISBN 978-0-87335-233-8.
- McKetta, John J. (18 July 2007). Encyclopedia of Chemical Processing and Design: Volume 28 – Lactic Acid to Magnesium Supply-Demand Relationships. M. Dekker. ISBN 978-0-8247-2478-8. Retrieved 2010-09-29.
- Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 73. ISBN 0080379419.
- Ober, Joyce A. "Lithium" (PDF). United States Geological Survey. pp. 77–78. Retrieved 2007-08-19.
- Romero, Simon (2009-02-02). "In Bolivia, a Tight Grip on the Next Big Resource". New York Times.
- "USGS Mineral Commodities Summaries 2009". USGS.
- Money Game Contributors (2013-04-26). "New Wyoming Lithium Deposit". Business Insider. Retrieved 2013-05-01.
- "SQM Announces New Lithium Prices – SANTIAGO, Chile, Sept. 30 /PRNewswire-FirstCall/". Prnewswire.com. 2009-09-30. Retrieved 2013-05-01.
- Riseborough, Jesse. "IPad Boom Strains Lithium Supplies After Prices Triple". Businessweek. Retrieved 2013-05-01.
- Parker, Ann. Mining Geothermal Resources. Lawrence Livermore National Laboratory
- Patel, P. (2011-11-16) Startup to Capture Lithium from Geothermal Plants. technologyreview.com
- Wald, M. (2011-09-28) Start-Up in California Plans to Capture Lithium, and Market Share. The New York Times
- "Study finds resource constraints should not be a limiting factor for large-scale EV battery production". Green Car Congress. 2011-06-17. Retrieved 2011-06-17.
- "University of Michigan and Ford researchers see plentiful lithium resources for electric vehicles". Green Car Congress. 2011-08-03. Retrieved 2011-08-11.
- USGS (2011). "Lithium" (PDF). Retrieved 2012-11-03.
- Worldwide demand by sector
- Clark, Jim (2005). "Some Compounds of the Group 1 Elements". chemguide.co.uk. Retrieved 2013-08-08.
- "Disposable Batteries - Choosing between Alkaline and Lithium Disposable Batteries". Batteryreview.org. Retrieved 2013-10-10.
- "Battery Anodes > Batteries & Fuel Cells > Research > The Energy Materials Center at Cornell". Emc2.cornell.edu. Retrieved 2013-10-10.
- Totten, George E.; Westbrook, Steven R. and Shah, Rajesh J. (2003). Fuels and lubricants handbook: technology, properties, performance, and testing, Volume 1. ASTM International. p. 559. ISBN 0-8031-2096-6.
- Rand, Salvatore J. (2003). Significance of tests for petroleum products. ASTM International. pp. 150–152. ISBN 0-8031-2097-4.
- Davis, Joseph R. ASM International. Handbook Committee (1993). Aluminum and aluminum alloys. ASM International. pp. 121–. ISBN 978-0-87170-496-2. Retrieved 2011-05-16.
- Ernst-Christian, K. (2004). "Special Materials in Pyrotechnics: III. Application of Lithium and its Compounds in Energetic Systems". Propellants, Explosives, Pyrotechnics 29 (2): 67–80. doi:10.1002/prep.200400032.
- Wiberg, Egon; Wiberg, Nils and Holleman, Arnold Frederick Inorganic chemistry, Academic Press (2001) ISBN 0-12-352651-5, p. 1089
- Mulloth, L.M. and Finn, J.E. (2005). "Air Quality Systems for Related Enclosed Spaces: Spacecraft Air". The Handbook of Environmental Chemistry 4H. pp. 383–404. doi:10.1007/b107253.
- "Application of lithium chemicals for air regeneration of manned spacecraft". Lithium Corporation of America & Aeropspace Medical Research Laboratories. 1965.
- "Lithium Perchlorate Oxygen Candle. Pyrochemical Source of Pure Oxygen - I&EC Product Research and Development (ACS Publications)". Pubs.acs.org. 2002-05-01. Retrieved 2013-10-10.
- Hobbs, Philip C. D. (2009). Building Electro-Optical Systems: Making It All Work. John Wiley and Sons. p. 149. ISBN 0-470-40229-6.
- "Point Defects in Lithium Fluoride Films Induced by Gamma Irradiation". Proceedings of the 7th International Conference on Advanced Technology & Particle Physics: (ICATPP-7): Villa Olmo, Como, Italy 2001 (World Scientific). 2002. p. 819. ISBN 981-238-180-5.
- Sinton, William M. (1962). "Infrared Spectroscopy of Planets and Stars". Applied Optics 1 (2): 105. Bibcode:1962ApOpt...1..105S. doi:10.1364/AO.1.000105.
- "You’ve got the power: the evolution of batteries and the future of fuel cells" (PDF). Toshiba. Retrieved 2009-05-17.
- "Organometallics". IHS Chemicals. February 2012.
- Yurkovetskii, A. V.; Kofman, V. L.; Makovetskii, K. L. (2005). "Polymerization of 1,2-dimethylenecyclobutane by organolithium initiators". Russian Chemical Bulletin 37 (9): 1782–1784. doi:10.1007/BF00962487.
- Quirk, Roderic P.; Cheng, Pao Luo (1986). "Functionalization of polymeric organolithium compounds. Amination of poly(styryl)lithium". Macromolecules 19 (5): 1291. Bibcode:1986MaMol..19.1291Q. doi:10.1021/ma00159a001.
- Stone, F. G. A.; West, Robert (1980). Advances in organometallic chemistry. Academic Press. p. 55. ISBN 0-12-031118-6.
- Bansal, Raj K. (1996). Synthetic approaches in organic chemistry. p. 192. ISBN 0-7637-0665-5.
- LiAl-hydride
- Hughes, T.G.; Smith, R.B. and Kiely, D.H. (1983). "Stored Chemical Energy Propulsion System for Underwater Applications". Journal of Energy 7 (2): 128–133. doi:10.2514/3.62644.
- Emsley, John (2011). Nature's Building Blocks.
- Makhijani, Arjun and Yih, Katherine (2000). Nuclear Wastelands: A Global Guide to Nuclear Weapons Production and Its Health and Environmental Effects. MIT Press. pp. 59–60. ISBN 0-262-63204-7.
- National Research Council (U.S.). Committee on Separations Technology and Transmutation Systems (1996). Nuclear wastes: technologies for separations and transmutation. National Academies Press. p. 278. ISBN 0-309-05226-2.
- Barnaby, Frank (1993). How nuclear weapons spread: nuclear-weapon proliferation in the 1990s. Routledge. p. 39. ISBN 0-415-07674-9.
- Baesjr, C (1974). "The chemistry and thermodynamics of molten salt reactor fuels". Journal of Nuclear Materials 51: 149. Bibcode:1974JNuM...51..149B. doi:10.1016/0022-3115(74)90124-X.
- Agarwal, Arun (2008). Nobel Prize Winners in Physics. APH Publishing. p. 139. ISBN 81-7648-743-0.
- "'Splitting the Atom': Cockcroft and Walton, 1932: 9. Rays or Particles?" Department of Physics,University of Cambridge
- MATTHEW L. WALD (Oct 8, 2013). "Report Says a Shortage of Nuclear Ingredient Looms". New York Times.
- Kean, Sam (2011). The Disappearing Spoon.
- Yacobi S, Ornoy A (2008). "Is lithium a real teratogen? What can we conclude from the prospective versus retrospective studies? A review". Isr J Psychiatry Relat Sci 45 (2): 95–106. PMID 18982835.
- Lieb, J; Zeff (1978). "Lithium treatment of chronic cluster headaches.". The British Journal of Psychiatry (133): 556-558. doi:10.1192/bjp.133.6.556. Retrieved 24 February 2014.
- Furr, A. K. (2000). CRC handbook of laboratory safety. Boca Raton: CRC Press. pp. 244–246. ISBN 978-0-8493-2523-6.
- "Illinois Attorney General – Basic Understanding Of Meth". Illinoisattorneygeneral.gov. Retrieved 2010-10-06.
- Harmon, Aaron R. (2006). "Methamphetamine remediation research act of 2005: Just what the doctor ordered for cleaning up methfields—or sugar pill placebo?" (PDF). North Carolina Journal of Law & Technology 7. Retrieved 2010-10-05.
- Bro, Per and Levy, Samuel C. (1994). Battery hazards and accident prevention. New York: Plenum Press. pp. 15–16. ISBN 978-0-306-44758-7.
- "TSA: Safe Travel with Batteries and Devices". Tsa.gov. 2008-01-01. Archived from the original on 2012-01-04.
External links
- Lithium at The Periodic Table of Videos (University of Nottingham)
- International Lithium Alliance
- USGS: Lithium Statistics and Information
- Lithium Supply & Markets 2009 IM Conference 2009 Sustainable lithium supplies through 2020 in the face of sustainable market growth
- University of Southampton, Mountbatten Centre for International Studies, Nuclear History Working Paper No5.
[hide] Periodic table (Large version) | |||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | ||||||||||||||||
1 | H | He | |||||||||||||||||||||||||||||||
2 | Li | Be | B | C | N | O | F | Ne | |||||||||||||||||||||||||
3 | Na | Mg | Al | Si | P | S | Cl | Ar | |||||||||||||||||||||||||
4 | K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | |||||||||||||||
5 | Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe | |||||||||||||||
6 | Cs | Ba | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Po | At | Rn | |
7 | Fr | Ra | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | 113 | Fl | 115 | Lv | 117 | 118 | |
|
|
|
No comments:
Post a Comment